Lecturenotes - ín

CHAPTER \# 2 CYLINDRICAL SYNCHRONOUS GENERATOR AND MOTOR

1. Introduction

Synchronous machines are named by this name as their speed is directly related to the line frequency. Synchronous machines may be operated either as motor or generator. Synchronous generators are called alternators. Synchronous motors are used mainly for power factor correction when operate at no load. Synchronous machines are usually constructed with stationary stator (armature) windings that carrying the current and rotating rotor (field) winding that create the magnetic flux. This flux is produced by DC current from a separate source (e.g. DC shunt generator).

2. Types of Synchronous Generators

The type of synchronous generators depends on the prime mover type as:
a) Steam turbines: synchronous generators that driven by steam turbine are high speed machines and known as turbo alternators. The maximum rotor speed is 3600 rpm corresponding 60 Hz and two poles.
b) Hydraulic turbines: synchronous generators that driven by water turbine are with speed varies from 50 to 500 rpm . The type of turbine to be used depends on the water head. For water head of 400 m , Pelton wheel turbines are used. But for water head up to 350 m , Francis Turbines are used. For water head up to 50 m , Kaplan Turbines are used.

Electrical Engineering Department Electric Machines II

c) Diesel Engines: they are used as prime movers for synchronous generator of small ratings.

For the type a) and c) the rotor shape is cylindrical as shown in Fig. 1, and this type is called cylindrical rotor synchronous machines. But for type b), the rotor has salient poles on the rotor periphery as shown in Fig. 2.

Fig.1, Cylindrical-type synchronous machine

Fig.2, Salient-pole synchronous machine

3. Relation Between Field Flux and Armature Flux

There are two types of fluxes are obtained in the air gap between the armature and rotor;

- Field flux (F_{f}) that produced by the DC exciter and by using the appropriate prime mover, it can rotate at synchronous speed $\left(\mathrm{N}_{\mathrm{s}}\right)$.
- Armature flux or armature reaction $\left(F_{a}\right)$ which is produced from 3-phase armature winding and rotate with the synchronous speed.

Therefore, both of F_{f} and F_{a} are stationary w.r.t. each other

4. Equivalent Electrical Circuit Model per Phase

Neglecting saturation, the circuit diagrams, shown in Fig. 3, illustrate the per phase equivalent circuits of a cylindrical rotor synchronous machine in the motor and generator mode respectively.

Fig. 3, equivalent circuit (a) synchronous Generator (b) synchronous Motor

Fig. 4, equivalent circuit including leakage reactance and air-gap voltage
R_{a} armature resistance
X_{L} Leakage reactance (Leakage flux) saturation doesn't affect its value
X_{a} armature reactance (corresponding to Linkage flux) saturation affects its value
E_{f} the field voltage (Exciter DC voltage induced at the armature side)
E_{r} the air-gap voltage which is the resultant between E_{f} and E_{a}

Faculty of Engineering at Shubra
The leakage reactance X_{L} and the armature reactance X_{a} may be combined to give synchronous reactance X_{s}.

$$
X_{S}=X_{L}+X_{a}
$$

Also, $R_{a}+\mathrm{J} X_{S}$ is called synchronous impedance Z_{S}
If the mutual inductance between the rotor and armature (L_{af}) is considered as shown in Fig. 4, then the rms value of the induced voltage E_{f} can be given as:

$$
E_{f}=\frac{2 \pi f L_{a f} I_{f}}{\sqrt{2}}
$$

Therefore, the excitation current $\left(\mathrm{I}_{f}\right)$ can be calculated as:

$$
I_{f}=\frac{\sqrt{2} E_{f}}{2 \pi f L_{a f}}
$$

5. Phasor Diagram of Unsaturated Cylindrical Alternators

5.1 Lagging power factor

Assume that the synchronous generator is loaded with a lagging power factor load.
From the phasor diagram shown in Fig. 5, it is clear that the terminal voltage is decreased from its no-load value E_{f} to its loaded value V_{a} (for a lagging power factor). This is because of: Drop due to armature resistance, $I R_{a} \boldsymbol{\&}$ drop due to leakage reactance, $I X_{L}$ and drop due to armature reaction $I X_{a}$.

Fig. 5, Phasor diagram for synchronous generator (p.f. Lag)
The angle (δ) between the no-load voltage $\left(E_{f}\right)$ and the terminal voltage $\left(V_{a}\right)$ is called the load angle or (power angle) and it is positive value in case of alternators.

The DC voltage (Excitation voltage) produces a flux $\left(\Phi_{f}\right)$ or (field mmf F_{f}). If the armature circuit is closed by an electric load, the armature reaction $\left(\Phi_{a}\right)$ or (armature $\operatorname{mmf} F_{a}$) is produced. These two fluxes may support each other or oppose each other depend on the load power factor to produce the air-gap or resultant flux (Φ_{r}) or (resultant mmf F_{r}).

From the phasor diagram shown in Fig. 5,
Since $F_{r}<F_{f}$ this means that F_{a} oppose F_{f}
Since $V_{a}<E_{f}$ this is called over-excited alternator

5.2 Leading power factor

Assume that the synchronous generator is loaded with a leading power factor load.
From the phasor diagram shown in Fig. 6, it is clear that the terminal voltage is increased from its no-load value E_{f}

$$
E_{f}=V+I_{a}\left(R_{a}+J X_{S}\right)
$$

Fig. 6, Phasor diagram for synchronous generator (p.f. Lead)
From the phasor diagram shown in Fig. 6,
Since $F_{r}>F_{f}$ this means that F_{a} support F_{f}
Since $V_{a}>E_{f}$ this is called under-excited alternator

5.3 Unity power factor

Assume that the synchronous generator is loaded with a unity power factor load.
From the phasor diagram shown in Fig. 7, it is clear that the terminal voltage is decreased from its no-load value E_{f} (similar to lagging power factor)

Fig. 7, Phasor diagram for synchronous generator (p.f. unity)

From the phasor diagram shown in Fig. 7,

Since $F_{r}<F_{f}$ this means that F_{a} oppose F_{f}

Since $V_{a}<E_{f}$ this is called over-excited alternator

6. Analytical Representation of Phasor Diagram

Consider the phasor diagram of 3-ph alternator at lagging p.f. as shown in Fig. 8-(a).

Fig. 8-(a), Alternator phasor diagram at lagging p.f
We can describe this phasor diagram by two equations:

Horizontal Analysis:

$$
\begin{equation*}
E_{f} \cos (\delta)=V+I_{a} R_{a} \cos (\varphi)+I_{a} X_{s} \sin (\varphi) \tag{1}
\end{equation*}
$$

Vertical Analysis:

$$
\begin{equation*}
E_{f} \sin (\delta)=I_{a} X_{s} \cos (\varphi)-I_{a} R_{a} \sin (\varphi) . \tag{2}
\end{equation*}
$$

By dividing (2) over (1), we obtain:

$$
\tan (\delta)=\frac{I_{a} X_{s} \cos (\varphi)-I_{a} R_{a} \sin (\varphi)}{V+I_{a} R_{a} \cos (\varphi)+I_{a} X_{s} \sin (\varphi)}
$$

Once the angle (δ) is known, we can obtain the excitation voltage E_{f}.
Now, if R_{a} is neglected, the phasor diagram is shown in Fig. 8(b).

Fig. 8(b), Approximate phasor at lag p.f
Equations (1) and (2) can be rewritten by replacing $\mathrm{R}_{\mathrm{a}}=0$ as:

Horizontal Analysis:

$$
\begin{equation*}
E_{f} \cos (\delta)=V+I_{a} X_{S} \sin (\varphi) \tag{3}
\end{equation*}
$$

Vertical Analysis:

$$
\begin{equation*}
E_{f} \sin (\delta)=I_{a} X_{s} \cos (\varphi) \tag{4}
\end{equation*}
$$

By dividing (4) over (3), we obtain:

$$
\begin{equation*}
\tan (\delta)=\frac{I_{a} X_{s} \cos (\varphi)}{V+I_{a} X_{s} \sin (\varphi)} \ldots \tag{5}
\end{equation*}
$$

Once the angle (δ) is known, we can obtain the excitation voltage E_{f}.

Example

A 4-pole, Y-connected, 3-phase synchronous generator is rated 250 MVA, its terminal voltage is 24 kV , the synchronous reactance is: 125%. Calculate the synchronous reactance in ohm. - Calculate the rated current. - Calculate the induced voltage, E_{f}, at rated load and $\mathrm{pf}=0.8$ lag.

$$
\begin{gathered}
250 \times 10^{6}=\sqrt{3} \times 24000 \times I_{a} \rightarrow I_{a}=6014.0653 \mathrm{~A} \\
Z_{\text {base }}=\frac{V_{\text {phase }}}{I_{\text {phase }}}=\frac{24000 / \sqrt{3}}{6014.0653}=2.304 \Omega
\end{gathered}
$$

Synchronous reactance in $\mathrm{Ohm}=\mathrm{X}_{\mathrm{s}}($ in PU$) \times \mathrm{Z}_{\text {base }}=1.25 \times 2.304=2.88 \Omega$
The load angle can be obtained based on eqn. (5):

$$
\begin{gathered}
\tan (\delta)=\frac{I_{a} X_{s} \cos (\varphi)}{V+I_{a} X_{s} \sin (\varphi)}=\frac{6014.0653 \times 2.88 \times 0.8}{13856.4065+6014.0653 \times 2.88 \times 0.6}=0.57143 \\
\delta=29.745
\end{gathered}
$$

By substituting with this value in eqn. (3) as:

$$
E_{f} \times 0.868242=13856.4065+6014.0653 \times 2.88 \times 0.6
$$

$\mathrm{E}_{\mathrm{f}}=27928.52$
By the same way, we can describe the phasor diagram in case of leading power factor given in Fig. 9-(a) by two equations:

Fig. 9-(a), Alternator phasor diagram at leading p.f

Horizontal Analysis:

$$
\begin{equation*}
E_{f} \cos (\delta)=V+I_{a} R_{a} \cos (\varphi)-I_{a} X_{s} \sin (\varphi) \tag{6}
\end{equation*}
$$

Vertical Analysis:

$$
\begin{equation*}
E_{f} \sin (\delta)=I_{a} X_{s} \cos (\varphi)+I_{a} R_{a} \sin (\varphi) \tag{7}
\end{equation*}
$$

By dividing (7) over (6), we obtain:

$$
\tan (\delta)=\frac{I_{a} X_{s} \cos (\varphi)+I_{a} R_{a} \sin (\varphi)}{V+I_{a} R_{a} \cos (\varphi)-I_{a} X_{s} \sin (\varphi)}
$$

Once the angle (δ) is known, we can obtain the excitation voltage E_{f}.
Now, if R_{a} is neglected, the phasor diagram is shown in Fig. 9(b).

Fig. 9-b, Approximate phasor at leading p.f
Equations (6) and (7) can be rewritten by replacing $\mathrm{R}_{\mathrm{a}}=0$ as:

Horizontal Analysis:

$$
\begin{equation*}
E_{f} \cos (\delta)=V-I_{a} X_{s} \sin (\varphi) \tag{8}
\end{equation*}
$$

Vertical Analysis:

$$
\begin{equation*}
E_{f} \sin (\delta)=I_{a} X_{s} \cos (\varphi) \tag{9}
\end{equation*}
$$

By dividing (9) over (8), we obtain:

$$
\tan (\delta)=\frac{I_{a} X_{s} \cos (\varphi)}{V-I_{a} X_{s} \sin (\varphi)}
$$

Once the angle (δ) is known, we can obtain the excitation voltage E_{f}.
From the explained phasor diagrams given in Figs 5 to 9 , we notice that V is always behind E_{f}, this means the power angle (δ) is always positive, and this is the remarkable notice on the phasor diagram of synchronous generators.

7. Experimental Determination of Circuit Parameters

In the per phase equivalent circuit model illustrated in section 1, there are three parameters need to be determined: armature winding resistance R_{a}, synchronous reactance X_{s}, and induced emf in the phase winding V_{a}. The phase winding resistance R_{a} can be determined by measuring DC resistance of the winding using volt-ampere method (DC test), while the synchronous reactance and the induced emf can be determined by the open circuit and short circuit tests.

7.1 DC Test

The purpose of the DC test is to determine R_{a}. A variable DC voltage source is connected between two stator terminals.

The DC source is adjusted to provide approximately rated stator current, and the resistance between the two stator leads is determined from the voltmeter and ammeter readings. Then

$$
R_{D C}=\frac{V_{D C}}{I_{D C}}
$$

If the stator is Y-connected, the per phase stator resistance is

$$
R_{a}=\frac{R_{D C}}{2} \times 1.15
$$

If the stator is delta-connected, the per phase stator resistance is

$$
R_{a}=\frac{3}{2} R_{D C} \times 1.15
$$

Here, we take the skin effect of 15% to calculate the $A C$ value of R_{a}

7.2 Open Circuit Test

Drive the synchronous machine at the synchronous speed using a prime mover when the stator windings are open circuited. Vary the rotor (field) winding current $\left(\mathrm{I}_{f}\right)$, and measure stator winding terminal voltage (V). The relationship between the stator winding terminal voltage and the rotor field current obtained by the open circuit test is known as the open circuit characteristic (O.C.C.) of the synchronous machine as shown in Fig. 10.

Fig. 10, Open-Circuit Characteristic (O.C.C.)

From the OCC shown in Fig. 10, the effects of magnetic saturation can be clearly seen; the characteristic bends downward with increasing the field current. As saturation of the magnetic material increases, the permeability decreases and as a result, the reluctance of the flux paths is increases and reduces the effectiveness of the field current in producing magnetic flux. As can be seen from Fig. 10, the open-circuit characteristic is initially linear as the field current is increased from zero. This portion of the curve (and its linear extension for higher values of field current) is known as the air-gap line. It represents the machine open-circuit voltage characteristic corresponding to unsaturated operation. Deviations of the actual open-circuit characteristic from this air-gap line are a measure of the degree of saturation in the machine.

Note that with the machine armature winding open-circuited, the terminal voltage is equal to the generated voltage E_{f}. Thus the open-circuit characteristic is a measurement of the relationship between the field current I_{f} and E_{f}. It can therefore provide a direct measurement of the field-to-armature mutual inductance $\mathrm{L}_{a f}$.

Example

An open-circuit test performed on a three-phase, $60-\mathrm{Hz}$ synchronous generator shows that the rated open-circuit voltage of 13.8 kV is produced by a field current of 318 A . Extrapolation of the air-gap line from a complete set of measurements on the machine shows that the field current corresponding to 13.8 kV on the air-gap line is 263 A . Calculate the saturated and unsaturated values of L_{a}.

$\mathrm{E}_{f}=13800 / \sqrt{ } 3=7967.434 \mathrm{~V}$

To calculate the unsaturated value of $L_{a f}$, we use the air-gap quantity of field current

$$
\begin{gathered}
\left.L_{a f}\right|_{\text {Unsaturated }}=\frac{\sqrt{2} E_{f}}{\left.2 \pi f I_{f}\right|_{\text {air gap }}} \\
\left.L_{a f}\right|_{\text {Unsaturated }}=\frac{\sqrt{2} \times 7967.434}{2 \pi \times 60 \times 263}=113.644 \mathrm{mH}
\end{gathered}
$$

To calculate the saturated value of L_{af}, we use the O.C quantity of field current

$$
\begin{gathered}
\left.L_{\text {af }}\right|_{\text {Saturated }}=\frac{\sqrt{2} E_{f}}{\left.2 \pi f I_{f}\right|_{\text {open circuit }}} \\
\left.L_{\text {af }}\right|_{\text {Saturated }}=\frac{\sqrt{2} \times 7967.434}{2 \pi \times 60 \times 318}=93.989 \mathrm{mH}
\end{gathered}
$$

The saturation reduces the magnetic coupling between field and armature windings by

$$
\frac{113.644-93.989}{113.644} \times 100 \%=17.295 \%
$$

7.3 Short Circuit Test

Reduce the field current to a minimum value, using the field rheostat, and then open the field supply circuit breaker. Short the stator terminals of the machine together through three ammeters; Close the field circuit breaker; and raise the field current gradually to the value noted in the open circuit test at which the open circuit terminal voltage equals the rated voltage, while maintain the synchronous speed. Record the three stator currents. (This test should be carried out quickly since the stator currents may be greater than the rated value). Plot the relation between the field current and the armature current as shown in Fig. 11. Such kind of relation is called Short Circuit Characteristics (S.C.C.). It is clear from the S.C.C. shown in Fig. 11, the relation between the field current and the short-circuit armature current is straight line passing through origin. $\quad E_{f}=I_{a}\left(R_{a}+j X_{s}\right)$
if R_{a} is negligible, I_{a} will lag E_{f} by nearly 90 elec. deg.

Fig. 11, Short-circuit characteristics S.C.C.

7.4 Calculation of synchronous reactance \mathbf{X}_{S}

Following procedural steps are involved in this calculation:

1. O.C.C is plotted from the given data as shown in Fig. 10.
2. Similarly, S.C.C. is drawn from the data given by the short-circuit test as shown in Fig. 11. It is a straight line passing through the origin.

Both these curves are drawn on a common field-current base as shown in Fig. 12, from which, the value of Z_{S} is not constant but varies with saturation. At low saturation, its value is larger because the effect of a given armature ampere-turns is much more than at high saturation. Now, under short-circuit conditions, saturation is very low, because armature m.m.f. is directly demagnetising. Different values of Z_{S} corresponding to different values of field current are also plotted

Fig. 12, Determination of saturated and unsaturated values of X_{s} using S.C.C. and O.C.C.

Consider a field current I_{f}. The O.C. voltage corresponding to this field current is $O a$. When winding is short-circuited, the terminal voltage becomes zero. Hence, it may be assumed that the whole of this voltage $O a$ is being used to circulate the armature short-circuit current $O^{\prime} b$ against the synchronous impedance Z_{S}.

Based on both O.C.C. and S.C.C. given in Fig. 12, at any convenient field current (I_{f}), the saturated synchronous impedance Z_{S} can be calculated by:

$$
\begin{gathered}
\left.Z_{S}=\frac{\text { O.C.Voltage }}{\text { S.C.Current }}\right]_{\text {at same field current }} \\
Z_{S}=\frac{\text { Oa (from O.C.C. })}{O^{\prime} b(\text { from S.C.C. })} \\
X_{S}= \\
{\left.\sqrt{Z_{S}{ }^{2}-R_{a}^{2}} \text { (Saturated Value }\right)}^{\text {Sat }} \text {. }
\end{gathered}
$$

The unsaturated synchronous impedance Z_{S} can be calculated by:

$$
\begin{gathered}
\left.Z_{S}=\frac{\text { O.C.Voltage }}{S . C . C u r r e n t}\right]_{\text {at same field current }} \\
Z_{S}=\frac{\text { Oc }(\text { from airgap line })}{O^{\prime} b(\text { from S.C.C. })} \\
X_{S}=\sqrt{Z_{S}^{2}-R_{a}^{2}}(\text { unsaturated Value })
\end{gathered}
$$

The resistive element of the machine can simply be found from the DC test explained before. Value obtained in this test $\left(\mathrm{R}_{\mathrm{a}}\right)$ may increase the X_{S} accuracy.

* Notes on this method

The important comment on the determination of saturated and unsaturated values of X_{s} using S.C.C. and O.C.C. is as follows;
E_{f} is taken from the OCC whereby the core would be partially saturated for large field currents, while I_{a} is taken from the SCC where the core is not saturated at all field currents. Therefore E_{f} value taken during the OCC may not be the same E_{f} value in the SCC test. Hence the value of X_{S} is only an approximate.

Hence to gain better accuracy, the test should be done at low field currents which looks at the linear region of the OCC test.

Faculty of Engineering at Shubra

Example 1

From the following tests, determine the synchronous reactance, assuming R_{a} is 0.8Ω. S.C.C: a current of 100 A is produced on short-circuit by a field excitation of 2.5 A. O.C.C: An e.m.f. of 500 V (phase) is produced on open-circuit by the same excitation.

$$
Z_{S}=\frac{500}{100}=5 \Omega
$$

$X_{S}=\sqrt{Z_{S}{ }^{2}-R_{a}{ }^{2}}=\sqrt{5^{2}-0.8^{2}}=4.936 \Omega \quad$ (Saturated value)

7.5 Short Circuit Ratio (SCR)

SCR is defined as the ratio of the field current required for the rated voltage at open circuit to the field current required for rated armature current at short circuit. Based on Fig. 13, the SCR can be obtained as:

$$
S C R=\frac{O f^{\prime}}{O f^{\prime \prime}}
$$

The saturated synchronous reactance (in per unit) can be calculated as the inverse of SCR

$$
X_{S}(\text { saturated in } P U)=\frac{1}{S C R}=\frac{O f^{\prime \prime}}{O f^{\prime}}
$$

Fig. 13, Short Circuit Ratio (S.C.R.)

Example 2

The following data are taken from the open- and short-circuit characteristics of a 45 kVA, 3-ph, Y-connected, 220 (line-to-line), 6-poles, 60 Hz synchronous machine:
OCC: line-to-line voltage $=220 \mathrm{~V}$ \& Field current $=2.84 \mathrm{~A}$
SCC: Armature Current $=118 \mathrm{~A} \&$ Field current $=2.2 \mathrm{~A}$
Air-gap line: line-to-line voltage $=202 \mathrm{~V} \&$ Field current $=2.2 \mathrm{~A}$

Calculate the SCR and Compute the saturated and unsaturated value of synchronous reactance at rated voltage in Ohms and in per unit.
$\mathrm{V}_{\mathrm{a}}($ rated $)=220$ Line-to-line \rightarrow from OCC, the corresponding field current $=2.84 \mathrm{~A}$
$\mathrm{I}_{\mathrm{a}}($ rated $)=\frac{45000}{\sqrt{3} 220}=118 \mathrm{~A} \rightarrow$ from SCC, the corresponding field current $=2.2 \mathrm{~A}$
$\mathrm{SCR}=\frac{2.84}{2.2}=1.29$
$\mathrm{X}_{\mathrm{S}}($ Saturated $)=1 / \mathrm{SCR}=1 / 1.29=0.775$ P.U.
$X_{S}($ Base $)=\frac{V_{\text {rated }}}{I_{\text {rated }}}=\frac{220 / \sqrt{3}}{118}=1.0764 \mathrm{Ohm}$
$\mathrm{X}_{\mathrm{S}}($ Saturated $)=0.775 * 1.0764=0.8342 \mathrm{Ohm}$
From SCC, at Field Current of 2.2 A gives armature current of 118 A
From Air-gap Line, at Field Current of 2.2 A gives armature voltage of 116.6 V/phase $\mathrm{X}_{\mathrm{S}}($ unsaturated $)=116.6 / 118=0.988 \mathrm{Ohm}$
$\mathrm{X}_{\mathrm{S}}($ unsaturated $)=0.988 / 1.0764=0.918$ P.U.

Example (3)

A $200 \mathrm{kVA}, 480-\mathrm{V}, 60-\mathrm{Hz}, 4-$ pole, Y-Connected synchronous generator with a rated field current of 5 A was tested and the following data was taken.
a) from OC test - terminal voltage $=540 \mathrm{~V}$ at rated field current
b) from SC test - line current $=300 \mathrm{~A}$ at rated field current
c) from DC test - DC voltage of 10 V applied to two terminals, a current of 25 A was measured.

1. Calculate the speed of rotation in rpm
2. Calculate the saturated equivalent circuit parameters (armature resistance and synchronous reactance) in Ohms and PU.
$\mathrm{V}_{\text {rated }}=480 / \sqrt{ } 3=277.13 \mathrm{~V}$ and $\mathrm{I}_{\text {rated }}=200000 /(\sqrt{ } 3 * 480)=240.56 \mathrm{~A}$
$\mathrm{Z}_{\text {base }}=\mathrm{V}_{\text {rated }} / \mathrm{I}_{\text {a rated }}=277.13 / 240.56=1.152 \Omega$
The synchronous speed $\mathrm{n}_{\mathrm{s}}=60 f / \mathrm{P}=60 * 60 / 2=3600 / 2=1800 \mathrm{rpm}$

From DC Test

$\mathrm{R}_{\mathrm{DC}}=10 / 25=0.4 \Omega$
$\mathrm{R}_{\mathrm{a}}=(0.4 / 2) * 1.15=0.23 \Omega$
$\mathrm{R}_{\mathrm{a}}=0.23 / 1.152=0.2$ PU.

From OC Test

Rated field current produce rated voltage of $540 / \sqrt{ } 3=311.77 \mathrm{~V}$

From SC Test

Rated field current produce rated current $=300 \mathrm{~A}$
Saturated $Z_{S}=311.77 / 300=1.04 \Omega$
Saturated $Z_{S}=1.04 / 1.152=0.903 \mathrm{PU}$.

$$
\begin{gathered}
\mathrm{X}_{\mathrm{s}}=\sqrt{Z_{S}^{2}-R_{a}^{2}}=\sqrt{1.04^{2}-0.23^{2}}=1.0287 \Omega \\
X_{S}=\frac{1.0287}{1.152}=0.893 \mathrm{PU} .
\end{gathered}
$$

Example (4)

The following readings are taken from the results of open- and short-circuit test on a $5000-\mathrm{kVA}, 4160-\mathrm{V}, 3$-phase, 4-pole, 1800-rpm synchronous motor driven at rated speed:

Field current, A	169	192
Armature current, short-circuit test, A	694	790
Line voltage, open-circuit test, V	3920	4160
Line voltage, air-gap line, open-circuit test, V	4640	5270

The armature resistance is $11 \mathrm{~m} \Omega /$ phase. The armature leakage reactance is 0.12 PU .
Find (a) the short-circuit ratio,
(b) Saturated value of the armature reactance in ohms per phase and per unit,
(c) Unsaturated armature reactance in per unit and in ohms per phase.
$\mathrm{V}_{\mathrm{a}}($ rated $)=4160$ Line-to-line \rightarrow from OCC, the corresponding field current $=192 \mathrm{~A}$
$\mathrm{I}_{\mathrm{a}}($ rated $)=\frac{5000000}{\sqrt{3} 4160}=694 A \rightarrow$ from SCC , the corresponding field current $=169 \mathrm{~A}$

$$
\begin{gathered}
S C R=\frac{192}{169}=1.1361 \\
Z_{\text {base }}=\frac{4160 / \sqrt{3}}{694}=3.460774 \Omega
\end{gathered}
$$

$\mathrm{X}_{\mathrm{L}}=0.12 \times \mathrm{Z}_{\text {base }}=0.4153 \Omega$
b) Saturated synchronous impedance Z_{S} can be calculated by:

$$
\begin{gathered}
\left.Z_{S}=\frac{\text { O.C.Voltage }}{\text { S.C.Current }}\right]_{\text {at same field current }} \\
Z_{S}=\frac{3920 / \sqrt{3}}{694}=3.261114 \Omega \\
Z_{S}=\frac{4160 / \sqrt{3}}{790}=3.040224 \Omega
\end{gathered}
$$

The average value of the saturated Z_{s} can be calculated as:

$$
Z_{s}=\frac{3.261114+3.040224}{2}=3.15067 \Omega
$$

$$
X_{S}(\text { Saturated Value })=\sqrt{Z_{S}^{2}-R_{a}^{2}}=\sqrt{3.15067^{2}-0.011^{2}}=3.15065 \Omega
$$

$$
X_{a}(\text { Saturated Value })=X_{S}-X_{L}=3.15065-0.4153=2.73535 \Omega
$$

$$
X_{a}(\text { Saturated Value })=\frac{X_{a}}{Z_{\text {base }}}=\frac{2.73535}{3.460774}=0.7904 \mathrm{PU}
$$

c) Unsaturated synchronous impedance Z_{S} can be calculated by:

$$
\begin{gathered}
\left.Z_{S}=\frac{\text { air }- \text { gap Voltage }}{\text { S.C.Current }}\right]_{\text {at same field current }} \\
Z_{S}=\frac{4640 / \sqrt{3}}{694}=3.8601 \Omega \\
Z_{S}=\frac{5270 / \sqrt{3}}{790}=3.85144 \Omega
\end{gathered}
$$

The average value of the saturated Z_{s} can be calculated as:

$$
Z_{s}=\frac{3.8601+3.85144}{2}=3.85577 \Omega
$$

$$
X_{S}(\text { Saturated Value })=\sqrt{Z_{S}^{2}-R_{a}^{2}}=\sqrt{3.85577^{2}-0.011^{2}}=3.85575 \Omega
$$

$$
X_{a}(\text { Saturated Value })=X_{S}-X_{L}=3.85575-0.4153=3.44045 \Omega
$$

$$
X_{a}(\text { Saturated Value })=\frac{X_{a}}{Z_{\text {base }}}=\frac{3.44045}{3.460774}=0.994 P U
$$

7.6 Obtaining the phasor diagram from OCC and SCC at saturation condition

In case of saturation, X_{s} is variable (unknown). But all information to calculate E_{r} is given, therefore,

$$
E_{r}=V+I_{a}\left(R_{a}+j X_{L}\right)
$$

From OCC at E_{r} we get the corresponding F_{r} which is $\perp_{\mathrm{E}_{r}}$ and lead by 90 from SCC at I_{a} find the corresponding F_{a} where F_{a} is drawn in the same direction of I_{a} Since $\mathrm{F}_{\mathrm{r}}=\mathrm{F}_{\mathrm{f}}+\mathrm{F}_{\mathrm{a}}$, we can obtain F_{f}

Again from OCC at the value of F_{f}, we can obtain E_{f}, The direction of E_{f} is perpendicular to F_{f} and lag by 90 . These steps are given in Fig. 14.

Field excitation

Fig. 14, Phasor diagram from OCC and SCC

7.7 Voltage regulation

It is clear that with change in load, there is a change in terminal voltage of an alternator. The magnitude of this change depends not only on the load but also on the load power factor. The voltage regulation of an alternator is defined as "the rise in voltage when full-load is removed (field excitation and speed remaining the same) divided by the rated terminal voltage."

In case of lagging and unity power factors, the regulation is positive (up)

$$
\% \text { regulation }(u p)=\frac{E_{f}-V_{a}}{V_{a}} * 100
$$

In case of leading power factor, the regulation is negative (down).

$$
\% \text { regulation }(\text { down })=\frac{E_{f}-V_{a}}{V_{a}} * 100
$$

Example (5)

A 1000 kVA, 3300-V, 3-phase, star-connected alternator delivers full-load current at rated voltage at 0.80 p. f. Lagging. The resistance and synchronous reactance of the machine per phase are 0.5 ohm and 5 ohms respectively. Estimate the terminal voltage for the same excitation and same load current at 0.80 p. f. leading.

In case of lagging power factor

Rated phase voltage $(\mathrm{V})=3300 / \sqrt{3}=1905.26$ volt
Rated phase current $\left(\mathrm{I}_{\mathrm{a}}\right)=\frac{1000 \times 10^{3}}{\sqrt{3} \times 3300}=174.95 \mathrm{Amp}$.
$\mathrm{I}_{\mathrm{a}} \mathrm{R}_{\mathrm{a}}=174.95 * 0.5=87.475$ volt
$\mathrm{I}_{\mathrm{a}} \mathrm{X}_{\mathrm{S}}=174.95 * 5.0=874.75$ volt
Component of E_{f} along the horizontal axis $\mathrm{OD}=\mathrm{OA}+\mathrm{AB}{ }^{\prime}+\mathrm{B}$ ' D
$\mathrm{OD}=\mathrm{V}+\mathrm{AB} \cos (\phi)+\mathrm{BC} \sin (\phi)=1905.26+87.475 * 0.8+874.75 * 0.6=2500.09$
Component of E_{f} along the vertical axis $\mathrm{DC}=\mathrm{BC} \cos (\phi)-\mathrm{AB} \sin (\phi)$
$\mathrm{DC}=874.75 * 0.8-87.475 * 0.6=647.315$
$E_{f}=\sqrt{2500.09^{2}+647.315^{2}}=2582.53$ volt
Load angle $\delta=\tan ^{-1} \frac{D C}{O D}=\tan ^{-1} \frac{647.315}{2500.09}=14.52$

In case of leading power factor

Since the excitation is kept constant, this means E_{f} is the same in magnitude, and the alternator delivering rated current at 0.80 leading p.f., the phasor diagram is to be drawn to evaluate V.

Construction of the phasor diagram starts with marking the reference. Take a point A which is the terminating point of phasor V which starts from O. Point O is the point yet to be marked, for which the other phasors have to be drawn. Draw AB parallel to the current I_{a}. Then draw $B C$ perpendicular to $A B$. From C, draw an arc of length E, i.e. 2582.53 volts to intersect with the reference line (ref) to locate O. Therefore the terminal voltage OA represents the terminal voltage (V).
$\mathrm{AB}=\mathrm{I}_{\mathrm{a}} \mathrm{R}_{\mathrm{a}}=87.475$ volt with angle 36.8 and $\mathrm{BC}=\mathrm{I}_{\mathrm{a}} \mathrm{X}_{\mathrm{s}}=874.75$ volt $\perp I_{a}$
From the phasor diagram, V $=2925$ Volt

Example (6)

The following test results were obtained on a $275-\mathrm{kW}, 3-\mathrm{ph}, 6600-\mathrm{V}$ non-salient pole type generator. Open-circuit characteristic :

Phase Voltage (V)	3233	3810	4180	4677
Field Current (A)	46.5	58	67.5	96

Short-circuit characteristic : Stator current 35 A with an exciting current of 50 A. Leakage reactance drop on full-load $=8 \%$.

Neglect armature resistance. Calculate as accurately as possible the exciting current (for full-load) at power factor 0.8 lagging.
Rated phase voltage $\mathrm{V}_{\mathrm{a}}=6600 / \sqrt{3}=3810.51178 \mathrm{~V}$.
Rated Current $\mathrm{I}_{\mathrm{a}}=275 \times 10^{3} /(3 \times 3810.5 \times 0.8)=30.07033 \mathrm{~A}$
$\mathrm{I}_{\mathrm{a}} \mathrm{X}_{\mathrm{L}}=8 \%=0.08$ P.U. $=0.08 \times 3810.51178=304.8409 \mathrm{~V}$
$\mathrm{X}_{\mathrm{L}}=304.8409 / 30.07033=10.1376 \Omega$
From the phasor diagram shown in Fig. 16, draw the rated voltage as a reference OA.
Then draw $\mathrm{I}_{\mathrm{a}} \mathrm{X}_{\mathrm{L}}=304.8409 \mathrm{~V} \perp \mathrm{I}_{\mathrm{a}}$ and represented by the length AB .
E_{r} can be obtained graphically by the length $\mathrm{OB}=4010 \mathrm{~V}$.
E_{r} can be calculated analytically by:

$$
E_{r}=\frac{6600}{\sqrt{3}}+304.8409 \angle(90-36.8699)=4000.856 \angle 3.4946 \mathrm{~V}
$$

Fig. 15, OCC and SCC of example 5

Fig. 16, phasor diagram of example 5

From the OCC shown in Fig. 16, at voltage of 4010, we can get $\mathrm{F}_{\mathrm{r}}=62 \mathrm{~A}$ and represented by $\mathrm{OC} \perp \mathrm{OB}$.

From the SCC, shown in Fig. 15, at full load current of 30 A , the corresponding field current $\mathrm{F}_{\mathrm{a}}=43 \mathrm{~A}$ that is represented by the line $\mathrm{DC} / / \mathrm{I}_{\mathrm{a}}$ and in the same direction.
\rightarrow (hint) No need to draw the SCC as it is represented by a straight line.

$$
\begin{gathered}
\mathrm{I}_{\mathrm{a}}=35 \mathrm{~A} \quad \rightarrow \mathrm{I}_{\mathrm{f}}=50 \mathrm{~A} \\
\mathrm{I}_{\mathrm{a}}=30.07033 \mathrm{~A} \rightarrow \mathrm{~F}_{\mathrm{a}}=? ? \mathrm{~A} \\
\mathrm{~F}_{\mathrm{a}}=50 \times(30.07033 / 35)=42.9576 \mathrm{~A}
\end{gathered}
$$

From the MMF triangle ODC, the value of F_{f} that is represented by $\mathrm{OD}=94.3 \mathrm{~A}$ F_{f} can be obtained analytically by:

$$
F_{f}=F_{r}-F_{a}=62 \angle(90+3.4946)-42.9576 \angle-36.8699=95.599 \angle 113.5164
$$

7.8. Zero Power Factor Test or Potier Triangle Method

This method is based on the separation of armature-leakage reactance X_{L} and the armature reaction effects X_{a}. Hence, it gives more accurate results. The experimental data required is
(i) No-load curve Or O.C.C. and
(ii) Full-load, zero-power factor curve (Z.P.F.C), also called wattless load characteristic. It is the curve of terminal volts against excitation when armature is delivering F.L. current at zero p.f. (when loaded by a pure inductive load for example). Both OCC \& ZPFC are shown in Fig. 17.

Point A, at which $(\mathrm{V}=0)$ and the current flow is the full load current, on Z.P.F.C is obtained from a short-circuit test with full-load armature current. Hence, $O A$ represents field current which is equal and opposite to the demagnetising armature reaction and for balancing leakage reactance drop at full-load.

From B, draw $B H$ equal to and parallel to $O A$. From $H, H D$ is drawn parallel to the air gap line OC. Hence, we get point D on the O.C.C. curve. Connect the two points DB to get the triangle $B H D$ which is known as Potier triangle. This triangle is constant for a given armature current and hence can be transferred to give us other points like M, L
etc. Draw $D E$ perpendicular to $B H$. The length $D E$ represents the voltage drop due to armature leakage reactance X_{L} i.e. $I_{a} X_{L}$. $B E$ gives field current necessary to overcome demagnetising effect of armature reaction at full load and $E H$ for balancing the armature leakage reactance drop $D E$.

Fig. 17, Potier Triangle
Let V be the terminal voltage on full-load, then if we add to it vectorially the voltage drop due to armature leakage reactance alone (neglecting R_{a}), then we get voltage $E_{r}=$ $D F$. Obviously, field excitation corresponding to E_{r} is given by $O F$. $N A(=B E)$ represents the field current needed to overcome armature reaction. Hence, if we add $N A$ vectorially to $O F$, we get excitation(OJ) required to produce E_{f} whose value from O.C.C curve (JK).

Example (7)

A 3-phase, 6000-V alternator has the following O.C.C. at normal speed:

Field Current (A)	14	18	23	30	43
Terminal Voltage (V)	4000	5000	6000	7000	8000

With armature short-circuited and full-load current flowing, the field current is 17 A . Also when the machine is supplying full-load of 2,000 kVA at zero power factor, the field current is 42.5 A and the terminal voltage is 6000 V .
Determine the field current required when the machine is supplying the full-load at 0.8 p.f. lagging.

The O.C.C. at phase voltage is

Field Current (A)	14	18	23	30	43
Phase Voltage (V)	2309.4	2886.75	3464.1	4041.45	4618.8

We have two points on Z.P.F.C,

Field Current (A)	17	42.5
Phase Voltage (V)	0	3464.1

Fig. 18 OCC and ZPFC for example 6
From both the OCC and ZPFC we can obtain Potier triangle BHD as shown in Fig. 18.
From Potier triangle, DE represents $\mathrm{I}_{\mathrm{a}} \mathrm{X}_{\mathrm{L}}=450 \mathrm{~V}$.
From the phasor diagram shown in Fig. 19, we can obtain E_{r} graphically (OB) or mathematically as:

$$
\begin{gathered}
E_{r}=\sqrt{\left(V_{a}+I_{a} X_{L} \sin (\varphi)\right)^{2}+\left(I_{a} X_{L} \cos (\varphi)\right)^{2}} \\
E_{r}=\sqrt{(3464.1+450 \times 0.6)^{2}+(450 \times 0.8)^{2}}=3751.41 \mathrm{~V}
\end{gathered}
$$

From the OCC at 3751 V , we get the corresponding field current $\left(\mathrm{F}_{\mathrm{r}}\right)$ of 26.5 A .
This field current $(\mathrm{OC}=26.5)$ is drawn $\perp \mathrm{OB}$
From Potier triangle we can get the field current (F_{a} corresponding to $\mathrm{I}_{\mathrm{a}} X_{a}$) which is $\mathrm{BE}=14.5 \mathrm{~A}$. This value is drawn in Fig. 19 as the length DC parallel to the armature current and in the same direction.

Therefore, from the MMF triangle ODC, the field current $\left(\mathrm{F}_{\mathrm{f}}\right) \mathrm{OD}=37.2 \mathrm{~A}$.

Fig. 19, Phasor diagram of example 6

Example (8)

An 11-kV, 1000-kVA, 3-phase, Y-connected alternator has a resistance of 2Ω per phase. The open-circuit and full-load zero power factor characteristics are given below.

Find the voltage regulation of the alternator for full load current at 0.8 p.f. lagging by Potier method.

Field Current (A)	40	50	110	140	180
OCC line voltage	5800	7000	12500	13750	15000
ZPF line voltage	0	1500	8500	10500	12500

The phase voltages used in OCC and ZPFC are as in the following table

Field Current (A)	40	50	110	140	180
OCC phase voltage	3348.63	4041.45	7216.88	7938.57	8660.25
ZPF phase voltage	0	866	4907.48	6062.18	7216.88

The full-load current $\mathrm{I}_{\mathrm{a}}=1000^{*} 10^{3} /\left(\sqrt{ } 3 \times 11 \times 10^{3}\right)=52.49 \mathrm{~A}$
Phase voltage $V_{a}=11 \times 10^{3} / \sqrt{ } 3=6350.85 \mathrm{~V}$
Potier triangle ACB is drawn as shown in Fig. 20. Where AC = 40 A . CB is drawn parallel to the air gap line. $\mathrm{BD} \perp \mathrm{AC}$.

BD , the leakage reactance drop $\mathrm{I}_{\mathrm{a}} \mathrm{X}_{\mathrm{L}}=\mathrm{BD}=1000 \mathrm{~V}$ (by measurement)
$\mathrm{AD}=30 \mathrm{~A}$ (armature reaction F_{a})
We draw the phasor diagram of the alternator at 0.8 pf lag as shown in Fig. 18.

Fig. 20, Potier triangle of example 7

Fig. 21, Phasor diagram of example 7
Draw $\mathrm{I}_{\mathrm{a}} \mathrm{R}_{\mathrm{a}}=52.49 * 2=105 \mathrm{~V}$ represented by the length $\mathrm{AB} / / \mathrm{I}_{\mathrm{a}}$
Then draw $\mathrm{I}_{\mathrm{a}} \mathrm{X}_{\mathrm{L}}=1000 \mathrm{~V}$ represented by the length $\mathrm{BC} \perp \mathrm{I}_{\mathrm{a}}$
Graphically, we can obtain the air gap voltage $\mathrm{E}_{\mathrm{r}}=7080 \mathrm{~V}$
From OCC at 7080 V, the corresponding field current $\left(\mathrm{F}_{\mathrm{r}}\right)$ is 108 A that is drawn $\perp \mathrm{E}_{\mathrm{r}}$ as the line OD in Fig. 21.
From potier triangle $\mathrm{F}_{\mathrm{a}}=30 \mathrm{~A}$ and represented by the line $\mathrm{FD} / / \mathrm{I}_{\mathrm{a}}$ and in the same direction.

From the MMF triangle OFD, the length OF that represent F_{f} is obtained $=128 \mathrm{~A}$.
From the OCC at field current $=128$, the corresponding voltage $\left(\mathrm{E}_{\mathrm{f}}\right)=7700 \mathrm{~V}$.

$$
\text { Regulation }(u p)=\frac{E_{f}-V_{a}}{V_{a}}=\frac{7700-6350}{6350}=0.2126=21.26 \%
$$ Electric Machines II

Note: in example 5, the field excitation of 43 A is assumed to be used for balancing armature reaction $\mathrm{F}_{\text {a }}$. In fact, a part of this value is used for balancing armature leakage drop of 304.8 V as explained in the Potier triangle method. Therefore, this is considered as inaccurate solution.

Example (9)

A $3000-\mathrm{kVA}, 11-\mathrm{kV}, 3-\mathrm{phase}$, star-connected alternator has resistance of $2 \Omega /$ phase. The open circuit and the zero power factor characteristics are shown below. Based on Potier triangle, calculate: a) The leakage reactance in Ohm per phase.
b) The full-load voltage regulation at 0.8 p.f. lag.

a) From Potier triangle: $\mathrm{I}_{\mathrm{a}} \mathrm{X}_{\mathrm{L}}=1.3 \mathrm{~cm}=1170 \mathrm{~V}$, also $\mathrm{F}_{\mathrm{a}}=1.5 \mathrm{~cm}=26.32 \mathrm{~A}$
$I_{a}=\frac{3000 \times 10^{3}}{\sqrt{3} \times 11000}=157.4562 \mathrm{~A}, \Phi=36.87$
The leakage reactance $\mathrm{X}_{\mathrm{L}}=1170 / 157.4562=7.431 \Omega$
b) $E_{r}=\frac{11000}{\sqrt{3}}+157.4562 \angle-36.87(2)+1170 \angle(90-36.87)=$

$$
7342.9 \angle 5.839
$$

From OCC at $\mathrm{E}_{\mathrm{r}}=7343$, we obtain $\mathrm{F}_{\mathrm{r}}=6.4 \mathrm{~cm}=112.28 \mathrm{~A}$ and lead E_{r} by 90

$$
F_{r}=112.28 \angle 95.839
$$

As we know, $\mathrm{F}_{\mathrm{r}}=\mathrm{F}_{\mathrm{f}}+\mathrm{F}_{\mathrm{a}}$
$\mathrm{F}_{\mathrm{f}}=\mathrm{F}_{\mathrm{r}}-\mathrm{F}_{\mathrm{a}}=112.28 \angle(5.839+90)-26.32 \angle-36.87=131.562 \angle 104.2924 \mathrm{~A}$
From OCC at $\mathrm{F}_{\mathrm{f}}=131.562 \mathrm{~A}=7.5 \mathrm{~cm}$, we can obtain $\mathrm{E}_{\mathrm{f}}=8.6 \mathrm{~cm}=7740 \mathrm{~V}$. and lag behind F_{f} by 90
$\mathrm{E}_{\mathrm{f}}=7740 \angle(104.2924-90)=7740 \angle 14.2924$

$$
\epsilon=\frac{E_{f}-V}{V}=\frac{7740-6350.853}{6350.853} \times 100=21.8734 \%(u p)
$$

8. Synchronous Motor

A synchronous motor, shown in Fig. 22, is electrically identical with an alternator or AC generator. In fact, a given synchronous machine may be used, at least theoretically, as an alternator, when driven mechanically or as a motor, when driven electrically, just as in the case of DC machines. Most synchronous motors are rated between 150 kW and 15 MW and run at speeds ranging from 150 to 1800 r.p.m.

The following characteristic features of a synchronous motor:

1. It runs either at synchronous speed or not at all i.e. while running it maintains a constant speed. The only way to change its speed is to vary the supply frequency.
2. It is not inherently self-starting. It has to be run up to synchronous (or near synchronous) speed by some means, before it can be synchronized to the supply.
3. It is capable of being operated under a wide range of power factors, both lagging and leading. Hence, it can be used for power correction purposes, in addition to supplying torque to drive loads.

Fig. 22, Synchronous motor

8.1 Principle of Operation

when a $3-\varphi$ armature winding is fed by a $3-\varphi$ supply, then a magnetic flux of constant magnitude but rotating at synchronous speed, is produced. Consider a synchronous motor shown in Fig. 23, in which the stator has two poles (for simplicity) marked N_{S} and S_{S} and rotating at synchronous speed in clockwise direction. At certain instant, assume the position of the stator poles are situated at points A and B With the rotor poles marked N and S are located at the position shown in Fig. 24-a. The rotor and stator poles will repel each other, with the result that the rotor tends to rotate in the anticlockwise direction.

Half a period later, stator poles, having rotated around, interchange their positions i.e. N_{S} is at point B and S_{S} at point A as shown in Fig. 24-b. Under these conditions, N_{S} attracts S and S_{S} attracts N. Hence, rotor tends to rotate clockwise (which is just the reverse of the first direction). Hence, we find that due to continuous and rapid rotation of stator poles, the rotor is subjected to a torque which is rapidly reversing i.e., in quick succession, the rotor is subjected to torque which tends to move it first in one direction and then in the opposite direction. Owing to its large inertia, the rotor cannot instantaneously respond to such quickly-reversing torque, with the result that it remains stationary.

Fig. 23, Two-pole, synchronous motor

Fig. 24, Rotor poles with respect to stator poles
Suppose that the rotor is not stationary, but is rotating clockwise with synchronous speed. Here, again the stator and rotor poles attract each other. It means that if the rotor poles also shift their positions along with the stator poles, then they will continuously experience a unidirectional torque i.e., clockwise torque, as shown in Fig. 24-c.
Therefore, the rotor (which is as yet unexcited) is speeded up to synchronous or near synchronous speed by some arrangement and then excited by DC source. The moment this (near) synchronously rotating rotor is excited, it is magnetically locked into
position with the stator i.e., the rotor poles are engaged with the stator poles and both run synchronously in the same direction. It is because of this interlocking of stator and rotor poles that the motor has either to run synchronously or not at all.

However, it is important to understand that the arrangement between the stator and rotor poles is not an absolutely rigid one. As the load on the motor is increased, the rotor progressively tends to fall back in phase (but not in speed as in DC motors) by some angle (as shown in Fig. 25) but it still continues to run synchronously. The value of this load angle depends on the amount of load to be met by the motor. In other words, the torque developed by the motor depends on this angle, δ.

Light Load
(δ Small)

Heavy Load (δ Large)

Fig. 25, Effect of increased loads on the load angle σ

8.2 Phasor Diagrams

The synchronous motor based on its equivalent circuit shown in Fig. 3-b, can be represented by the following equation:

$$
\begin{aligned}
& V=E_{f}+I_{a}\left(R_{a}+J X_{S}\right) \\
& E_{f}=V-I_{a}\left(R_{a}+J X_{S}\right)
\end{aligned}
$$

From the phasor diagram shown in Fig.26, it is clear that the synchronous motor acts as an electric load with lagging power factor and $E_{f}<\mathrm{V}$ (Under Excited motor).

From the phasor diagram shown in Fig. 27, it is clear that the synchronous motor acts as an electric load with leading power factor and $E_{f}>\mathrm{V}$ (Over Excited motor).

Also the load angle between E_{f} and V which called δ is always negative value.

R_{a} is considered

R_{a} is not considered

Fig. 26, Under-Excited Synchronous motor (Lagging power factor)

Fig. 27, Over-Excited synchronous motor (Leading power factor)

R_{a} is considered

R_{a} is not considered

Fig. 28, Over-Excited synchronous motor (Unity power factor)

Summary of this point:

The load angle δ is always negative.
Also, it is seen from the MMF triangle that F_{r} is always leading F_{f}
If field excitation is such that $E_{f}<V$, the motor is said to be under-excited. This happened at a lagging power factor as shown in Fig. 26. From this figure we notice that F_{a} support F_{f} and produce larger F_{r}

On the other hand, if DC field excitation is such that $E_{f}>V$, then motor is said to be over-excited and draws a leading current, as shown in Fig. 27. From this figure we notice that F_{a} Oppose F_{f} and produce smaller F_{r}
Moreover, the over-excited condition can be obtained at unity power factor as well as shown in Fig. 28.

Example (10)

A 3-Phase synchronous motor is worked on rated values of $400 \mathrm{~V} / \mathrm{Ph}, 32 \mathrm{~A} / \mathrm{Ph}$, and Unity p.f. $X_{S}=10$ ohms. Neglecting the value of R_{a}, calculate E_{f} and δ.
The terminal voltage $(\mathrm{V})=\mathrm{OA}=400$ volt
$\mathrm{I}_{\mathrm{a}} \mathrm{X}_{\mathrm{S}}=\mathrm{AB}=32 * 10=320$ volt
From phasr diagram, the excitation voltage $\mathrm{E}_{\mathrm{f}}=\sqrt{400^{2}+320^{2}}=512.25$ volt
The load angle or torque angle $(\delta)=\tan ^{-1}(320 / 400)=38.66$ (negative value)

8.3 Analytical Representation of Phasor Diagram

Consider the phasor diagram of 3-ph synch. motor at lagging p.f. as shown in Fig. 29-
(a).

Fig. 29-(a), Synch. Motor phasor diagram at lagging p.f
We can describe this phasor diagram by two equations:

Horizontal Analysis:

$$
\begin{equation*}
E_{f} \cos (\delta)=V-I_{a} R_{a} \cos (\varphi)-I_{a} X_{s} \sin (\varphi) . . \tag{1}
\end{equation*}
$$

Vertical Analysis:

$$
\begin{equation*}
E_{f} \sin (\delta)=I_{a} X_{s} \cos (\varphi)-I_{a} R_{a} \sin (\varphi) . \tag{2}
\end{equation*}
$$

By dividing (2) over (1), we obtain:

$$
\tan (\delta)=\frac{I_{a} X_{s} \cos (\varphi)-I_{a} R_{a} \sin (\varphi)}{V-I_{a} R_{a} \cos (\varphi)-I_{a} X_{s} \sin (\varphi)}
$$

Once the angle (δ) is known, we can obtain the excitation voltage E_{f}.
Now, if R_{a} is neglected, the phasor diagram is shown in Fig. 29-(b).

Fig. 29(b), Approximate phasor at lag p.f
Equations (1) and (2) can be rewritten by replacing $\mathrm{R}_{\mathrm{a}}=0$ as:

Horizontal Analysis:

$$
\begin{equation*}
E_{f} \cos (\delta)=V-I_{a} X_{s} \sin (\varphi) \tag{3}
\end{equation*}
$$

Vertical Analysis:

$$
\begin{equation*}
E_{f} \sin (\delta)=I_{a} X_{S} \cos (\varphi) \tag{4}
\end{equation*}
$$

By dividing (4) over (3), we obtain:

$$
\begin{equation*}
\tan (\delta)=\frac{I_{a} X_{s} \cos (\varphi)}{V-I_{a} X_{s} \sin (\varphi)} \ldots \tag{5}
\end{equation*}
$$

Once the angle (δ) is known, we can obtain the excitation voltage E_{f}.
By the same way, we can describe the phasor diagram in case of leading power factor given in Fig. 30-(a) by two equations:

Fig. 30-(a), Synch. Motor phasor diagram at leading p.f

Horizontal Analysis:

$$
\begin{equation*}
E_{f} \cos (\delta)=V+I_{a} X_{s} \sin (\varphi)-I_{a} R_{a} \cos (\varphi) \tag{6}
\end{equation*}
$$

Vertical Analysis:

$$
\begin{equation*}
E_{f} \sin (\delta)=I_{a} X_{s} \cos (\varphi)+I_{a} R_{a} \sin (\varphi) \tag{7}
\end{equation*}
$$

By dividing (7) over (6), we obtain:

$$
\tan (\delta)=\frac{I_{a} X_{s} \cos (\varphi)+I_{a} R_{a} \sin (\varphi)}{V+I_{a} X_{s} \sin (\varphi)-I_{a} R_{a} \cos (\varphi)}
$$

Once the angle (δ) is known, we can obtain the excitation voltage E_{f}.
Now, if R_{a} is neglected, the phasor diagram is shown in Fig. 30(b).

Fig. 30-b, Approximate phasor at lead p.f

Equations (6) and (7) can be rewritten by replacing $\mathrm{R}_{\mathrm{a}}=0$ as:

Horizontal Analysis:

$$
\begin{equation*}
E_{f} \cos (\delta)=V+I_{a} X_{s} \sin (\varphi) . . \tag{8}
\end{equation*}
$$

Vertical Analysis:

$$
\begin{equation*}
E_{f} \sin (\delta)=I_{a} X_{s} \cos (\varphi) \tag{9}
\end{equation*}
$$

By dividing (9) over (8), we obtain:

$$
\tan (\delta)=\frac{I_{a} X_{s} \cos (\varphi)}{V+I_{a} X_{s} \sin (\varphi)}
$$

Once the angle (δ) is known, we can obtain the excitation voltage E_{f}.
From the explained phasor diagrams given in Figs 26 to 30, we notice that E_{f} is always behind V , this means the power angle (δ) is always negative, and this is the remarkable notice on the phasor diagram of synchronous motors.

9. Power Flow within a Synchronous Machines

9.1 Synchronous Generators power

When a synchronous machine is operated as a generator, a prime mover is required to drive the generator as shown in Fig. 31.

Fig. 31, Synchronous generator configuration
In steady state, the mechanical torque of the prime mover (T_{pm}) should balance with the electromagnetic torque (T_{em}) produced by the generator and the mechanical loss torque ($\mathrm{T}_{\text {Loss }}$) due to friction and windage, as:

$$
T_{p m}=T_{e m}+T_{l o s s}
$$

Multiplying the synchronous speed to both sides of the torque equation, we have the power balance equation as:

Electrical Engineering Department

Faculty of Engineering at Shubra

$$
P_{p m}=P_{e m}+P_{l o s s}
$$

Where P_{pm} is Prime Mover power or the total mechanical power input to the generator or called the Gross Mechanical power $=\omega_{\text {syn }} \mathrm{T}_{\mathrm{pm}}$
$\mathrm{P}_{\text {loss }}$ is the mechanical power loss or the friction and windage loss $=\omega_{\text {syn }} \mathrm{T}_{\text {loss }}$ P_{em} is the electromagnetic power that converted to electrical power $=\omega_{\mathrm{syn}} \mathrm{T}_{\mathrm{em}}$

$$
\begin{array}{ll}
\mathrm{P}_{\mathrm{em}}=\omega_{\mathrm{syn}} \mathrm{~T}_{\mathrm{em}}=3 \mathrm{E}_{\mathrm{f}} \mathrm{I}_{\mathrm{a}} \cos (\phi+\delta) & \text { in case of Lagging P.F. } \\
\mathrm{P}_{\mathrm{em}}=\omega_{\mathrm{syn}} \mathrm{~T}_{\mathrm{em}}=3 \mathrm{E}_{\mathrm{f}} \mathrm{I}_{\mathrm{a}} \cos (\phi-\delta) & \text { in case of Leading P.F. }
\end{array}
$$

Taking the iron loss power ($\mathrm{P}_{\mathrm{irron}}$) and the armature cupper loss (P_{cu}), we can get the electrical output power ($\mathrm{P}_{\text {out }}$). The power flow of alternators is shown in Fig. 32.

$$
\mathrm{P}_{\mathrm{out}}=3 \mathrm{~V}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}} \cos (\phi)
$$

Fig. 32, Power flow in a synchronous generator
As we know, in case of generator

$$
E_{f}=V+I_{a}\left(R_{a}+J X_{S}\right)
$$

The value of X_{S} is much bigger compared to the value of R_{a}, so R_{a} can be neglected.

$$
E_{f}=V+I_{a}\left(J X_{S}\right)
$$

That can be represented by the phasor diagram shown in Fig. 33.

Fig. 33, phasor diagram for synchronous generator when neglecting R_{a}
From phasor diagram (Fig. 13), $\mathrm{E}_{\mathrm{f}} \sin (\delta)=\mathrm{I}_{\mathrm{a}} \mathrm{X}_{\mathrm{s}} \cos (\phi) \rightarrow \mathrm{I}_{\mathrm{a}} \cos (\phi)=\mathrm{E}_{\mathrm{f}} \sin (\delta) / \mathrm{X}_{\mathrm{s}}$

Therefore, $\mathrm{P}_{\mathrm{out}}=3 \mathrm{~V}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}} \cos (\phi)$

$$
P_{o u t}=\frac{3 V_{a} E_{f}}{X_{S}} \sin (\delta)
$$

If R_{a} is considered, the expression of the output power $\mathrm{P}_{\text {out }}$ will be

$$
P_{\text {out }}=\frac{3 V_{a} E_{f}}{Z_{S}} \cos (\theta-\delta)-\frac{3 E_{f}^{2}}{Z_{S}} \cos (\theta)
$$

Where θ the impedance angle $=\tan ^{-1}\left(\mathrm{X}_{\mathrm{S}} / \mathrm{R}_{\mathrm{a}}\right)$
If the iron loss power $\left(\mathrm{P}_{\mathrm{iron}}\right)$ and the armature cupper loss $\left(\mathrm{P}_{\mathrm{cu}}\right)$ are neglected, therefore $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{em}}$ and the electromagnetic torque (T) can be obtained as

$$
T=\frac{3 V_{a} E_{f}}{\omega_{s y n} X_{S}} \sin (\delta)
$$

When the stator winding resistance is ignored, δ can be regarded as the angle between the rotor and stator rotating magnetic fields. The electromagnetic torque of a synchronous machine is proportional to the sine function of the load angle, as plotted in Fig. 34, where the curve in the third quadrant is for the situation when the machine is operated as a motor, where the electromagnetic torque is negative because the armature current direction is reversed.

Fig. 34, T- δ relationship

9.2 Synchronous Motor power

When a synchronous machine is operated as a motor to drive a mechanical load as shown in Fig. 35, in steady state, the mechanical torque of the motor should balance the load torque and the mechanical loss torque due to friction and windage, that is

$$
T_{e m}=T_{\text {Load }}+T_{\text {loss }}
$$

Multiplying the synchronous speed to both sides of the torque equation, we have the power balance equation as

Fig. 35, Synchronous motor configuration
Similar to the case of a generator, the electromagnetic power is the amount of power being converted from the electrical into the mechanical power. That is

$$
\begin{array}{ll}
\mathrm{P}_{\mathrm{em}}=\omega_{\mathrm{syn}} \mathrm{~T}=3 \mathrm{E}_{\mathrm{f}} \mathrm{I}_{\mathrm{a}} \cos (\delta-\phi) & \text { in case of Lagging P.F. } \\
\mathrm{P}_{\mathrm{em}}=\omega_{\mathrm{syn}} \mathrm{~T}=3 \mathrm{E}_{\mathrm{f}} \mathrm{I}_{\mathrm{a}} \cos (\delta+\phi) & \text { in case of Leading P.F. }
\end{array}
$$

Fig. 36, phasor diagram for synchronous motor when R_{a} is neglected
From the phasor diagram shown in Fig. 36, $\mathrm{E}_{\mathrm{f}} \cos (\delta-\phi)=\mathrm{V}_{\mathrm{a}} \cos (\phi)$
Also, $\mathrm{E}_{\mathrm{f}} \sin (\delta)=\mathrm{I}_{\mathrm{a}} \mathrm{X}_{\mathrm{s}} \cos (\phi)$
Therefore, the electromagnetic power can be expressed as

$$
\begin{gathered}
P_{e m}=\frac{3 V_{a} E_{f}}{X_{S}} \sin (\delta) \\
T=\frac{3 V_{a} E_{f}}{\omega_{s y n} X_{S}} \sin (\delta)
\end{gathered}
$$

The T- δ relationship for the synchronous motor is shown in Fig. 34 (Third Quadrant). The input electrical power to the motor is $\mathrm{P}_{\mathrm{in}}=3 \mathrm{~V}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}} \cos (\phi)$

Taking the armature copper loss (P_{cu}) and the iron loss ($\mathrm{P}_{\mathrm{iron}}$) to get the electromagnetic power P_{em} as shown in the power flow shown in Fig. 37.

Fig. 37, power flow in synchronous motor

10.1 Different Torques of a Synchronous Motor

Various torques associated with a synchronous motor are as follows:

1. Starting torque (developed by the motor at starting)
2. Running torque (developed by the motor at the running conditions)
3. Pull-in torque (A synchronous motor is started as induction motor till it runs at 2 to 5% below the synchronous speed. Afterwards, excitation is switched on and the rotor pulls into step with the synchronously rotating stator field. The amount of torque at which the motor will pull into step is called the pull-in torque.
4. Pull-out torque (The maximum torque that the motor can develop without pulling out of synchronism)

To get the Pull-out Torque, we get the maximum power then divide by the synchronous speed.

If R_{a} is neglected; the max. power obtained at $\delta=90$ as shown in Fig. 38

$$
\left(P_{e m}\right)_{\max }=\frac{3 V_{a} E_{f}}{X_{S}} \sin (90)=\frac{3 V_{a} E_{f}}{X_{S}}
$$

Fig. 38, Maximum (Pull-out) torque

If R_{a} is not neglected, therefore to get the maximum power is at $\mathrm{dP}_{\mathrm{em}} / \mathrm{d} \delta=0$

$$
\frac{d P_{e m}}{d \delta}=-\frac{3 V_{a} E_{f}}{Z_{S}} \sin (\theta-\delta)=0
$$

This occurred at $\delta=\theta$,
Then the maximum power can be expressed as:

$$
\left(P_{e m}\right)_{\max }=\frac{3 V_{a} E_{f}}{Z_{S}}-\frac{3 E_{f}{ }^{2} R_{a}}{Z_{S}{ }^{2}}
$$

Example (11):

A 75-kW, 3- φ, Y-connected, 50-Hz,4-pole, 440-V cylindrical rotor synchronous motor operates at rated condition with 0.8 p.f. leading. The motor efficiency is 95% and $X_{S}=$ 2.5Ω. Calculate (i) input power (ii) armature current (iii) back e.m.f. (iv) power angle
(v) electromagnetic power (vi) maximum or pull-out torque of the motor.
$\mathrm{P}_{\text {out }}=75000 \mathrm{~W}, \mathrm{~N}_{\mathrm{s}}=60 \times 50 / 2=1500 \mathrm{rpm}, \omega_{\mathrm{s}}=2 \pi \times 1500 / 60=157.08 \mathrm{rad} / \mathrm{s}$
i) the motor efficiency $\eta=\mathrm{P}_{\text {out }} / \mathrm{P}_{\text {in }}$

$$
0.95=\frac{75000}{P_{\text {in }}} \rightarrow P_{\text {in }}=\frac{75000}{0.95}=78947.368 \mathrm{~W}
$$

ii) $P_{\text {in }}=\sqrt{3} V^{2} \cos (\varphi)$

$$
I_{a}=\frac{78947.368}{\sqrt{3} \times 440 \times 0.8}=129.489 \mathrm{~A}
$$

iv) Based on Horizontal and vertical analysis for leading power factor motor:

$$
\begin{aligned}
\tan (\delta)=\frac{I_{a} X_{s} \cos (\varphi)}{V+I_{a} X_{s} \sin (\varphi)} & =\frac{129.489 \times 2.5 \times 0.8}{\frac{440}{\sqrt{3}}+129.489 \times 2.5 \times \sin (36.87)}=0.5777 \\
\delta & =\tan ^{-1}(0.5777)=30^{\circ}
\end{aligned}
$$

iii) From vertical analysis

$$
E_{f} \sin (\delta)=I_{a} X_{S} \cos (\varphi)
$$

Then

$$
E_{f}=\frac{I_{a} X_{s} \cos (\varphi)}{\sin (\delta)}=\frac{129.489 \times 2.5 \times 0.8}{\sin (30)}=517.956 \mathrm{~V}
$$

v) the electromagnetic power P_{em} is given as

$$
\begin{gathered}
P_{e m}=3 E_{f} \mathrm{I}_{\mathrm{a}} \cos (\delta+\varphi)=3 \times 517.956 \times 129.489 \cos (30+36.87) \\
=79039.1 \mathrm{~W}
\end{gathered}
$$

vi) the pull out torque occurs at $\delta=90$

$$
T_{\text {pull-out }}=\frac{3 V_{a} E_{f}}{\omega_{S} X_{S}} \sin (90)=\frac{3 \times \frac{440}{\sqrt{3}} \times 517.956}{157.08 \times 2.5}=1005.183 \mathrm{~N} . \mathrm{m}
$$

10.2 Synchronous Machines Run at constant power

Assume that a synchronous motor is driving a constant torque load. The active power converted by the machine is constant, no matter what the value of the field current is, since the motor speed is a constant. Thus,

$$
\begin{gathered}
T=\frac{3 V_{a} E_{f}}{\omega_{\text {syn }} X_{S}} \sin (\delta)=\frac{3 V_{a} \mathrm{I}_{\mathrm{a}} \cos (\phi)}{\omega_{\text {syn }}}=\text { constant } \\
E_{f} \sin (\delta)=I_{a} \cos (\phi)=\text { constant }
\end{gathered}
$$

Using the phasor diagram shown in Fig. 39, we analyze the variation of the power factor angle of a synchronous motor when the field excitation is varied. Both E_{f} and I_{a} can only be able to vary along the horizontal and the vertical dotted lines.

Fig. 39, Synchronous Motor driving constant load
For a small rotor field current (under excited), the induced emf shown by the phasor $\mathbf{E}_{f l}$. This yields a lagging power factor angle ϕ_{1}.

As the excitation current increases (over excited), the lagging power factor angle is reduced. At a certain rotor current, the induced emf given by phasor $\mathbf{E}_{f 2}$ is

Electrical Engineering Department Electric Machines II

perpendicular to the terminal voltage phasor, and hence the stator current phasor is aligned with the terminal voltage, that is a zero power factor angle $\phi_{2}=0$.
When the rotor current further increases (over excited), the stator current leads the terminal voltage, or a leading power factor angle ϕ_{3}.
In practice, because of this feature, synchronous motors are often run at no active load as synchronous condensers for the purpose of power factor correction. The diagram shown in Fig. 40, illustrates schematically the power factor compensation for an inductive load, which is common for factories using large induction motor drives, using a synchronous condenser. By controlling the rotor excitation current such that the synchronous condenser draws a line current of leading phase angle, whose imaginary component cancels that of the load current, the total line current would have a minimum imaginary component. Therefore, the overall power factor of the inductive load and the synchronous condenser would be close to one and the magnitude of the overall line current would be the minimum.

Fig. 40, Over-excited synchronous motor for P.F. improvement
It can also be seen that only when the power factor is unity or the stator current is aligned with the terminal voltage, the magnitude of the stator current is minimum.

Example (12):

A synchronous motor absorbing 60 kW is connected in parallel with a factory load of 240 kW having a lagging p.f. of 0.8. If the combined load has a p.f. of 0.9, what is the value of the leading $k V A R$ supplied by the motor and at what p.f. is it working ?

$\mathrm{P}_{\text {Motor }}=60 \mathrm{~kW}$
$P_{\text {Factory }}=240 \mathrm{~kW}, \mathrm{Q}_{\text {Factory }}=240000 \times \tan (36.87)=180 \mathrm{kVAR}$
$\mathrm{P}_{\text {combined }}=240+60=300 \mathrm{~kW}$
since the P.F. of the combined load is 0.9 lagging, then
$\mathrm{Q}_{\text {combined }}=300000 \times \tan (25.84)=145 \mathrm{kVAR}(\mathrm{Lag})$
Therefore, $\mathrm{Q}_{\text {motor }}=180-145.297=35 \mathrm{kVAR}$ (Lead)
Motor angle $=\tan ^{-1} 35 / 60=30.3^{\circ}$
Motor P.F. $=\cos (30.26)=0.863$ lead
When the motor power is kept constant, then by plotting the magnitude of the stator current against the rotor excitation current at different loading conditions, a family of "V" curves can be obtained as shown in Fig. 41.

It is shown that a larger rotor field current is required for a larger active load to operate at unity power factor.

Fig. 41, V-curves of synchronous motor

When the generator power is kept constant, then by plotting the magnitude of the stator current against the rotor excitation current at different loading conditions, a family of "V" curves can be obtained as shown in Fig. 42.

It is shown that a larger rotor field current is required for a larger active load to operate at unity power factor.

Fig. 42, V-curves of synchronous generator

Example (13)

A 3-phase, 400-V, Y-connected, 4-pole, cylindrical synchronous generator with synchronous reactance of 10Ω and negligible armature resistance. For the requirements of constant power operation, the value of " $E_{f} \sin (\sigma)$ " is kept constant at 57.6 V. When supplying a load with 0.8 p.f. lag, calculate:
a) The excitation voltage (E_{f}) and the load angle (σ),
b) The armature current $\left(I_{a}\right)$.

If the generator is running under constant power condition and the load p.f. is increased to unity. Calculate the new values of:
c) The excitation voltage (E_{f}) and the load angle (σ),
d) The armature current $\left(I_{a}\right)$.

Graphical Solution

Assuming the voltage scale is each 10 V is represented by 1 cm $\mathrm{V}_{\mathrm{a}}=400 / \sqrt{ } 3=230.94 \mathrm{~V}=23.1 \mathrm{~cm}$ and represented by line OA
The current direction is OB at angle $\phi=36.9$ lag

Draw the line $C D$ parallel to V_{a} at a distance $E_{f} \sin (\sigma)$ is constant $=57.6 \mathrm{~V}=5.8 \mathrm{~cm}$ Draw a line $\perp \mathrm{OB}$ and intersect with CD in point G
Measure OG that represents the excitation voltage $E_{f}=28 \mathrm{~cm}=280 \mathrm{~V} \quad \# \# \# \# \#$
Measure the angle AOG that represents the load angle $(\sigma)=12 \quad$ \#\#\#\#
Measure AG that represents $\mathrm{I}_{\mathrm{a}} \mathrm{X}_{\mathrm{S}}=7.2 \mathrm{~cm}=72 \mathrm{~V}$
$\mathrm{I}_{\mathrm{a}}=\mathrm{AG} / \mathrm{X}_{\mathrm{S}}=72 / 10=7.2 \mathrm{~A}$
\#\#\#\#
Now, the power factor is increased to 1.0
Measure OH that represents the excitation voltage $E_{f}=23.8 \mathrm{~cm}=238 \mathrm{~V} \quad \# \# \# \# \#$
Measure the angle AOH that represents the load angle $(\sigma)=14$
The drop $\mathrm{I}_{\mathrm{a}} \mathrm{X}_{\mathrm{S}}$ is represented by $\mathrm{AH}=5.8 \mathrm{~cm}=57.6 \mathrm{~V}$
$\mathrm{I}_{\mathrm{a}}=\mathrm{AH} / \mathrm{X}_{\mathrm{S}}=57.6 / 10=5.76 \mathrm{~A}$
\#\#\#\#\#

Analytical Solution

From phasor diagram
$\mathrm{E}_{\mathrm{f}} \sin (\sigma)=\mathrm{I}_{\mathrm{a}} \mathrm{X}_{\mathrm{S}} \cos (\phi)$
$\mathrm{E}_{\mathrm{f}} \cos (\sigma)=\mathrm{V}_{\mathrm{a}}+\mathrm{I}_{\mathrm{a}} \mathrm{X}_{\mathrm{S}} \sin (\phi)$
From (1)

$$
I_{a}=\frac{E_{f} \sin (\sigma)}{X_{S} \cos (\phi)}=\frac{57.6}{10 \times 0.8}=7.2 \mathrm{~A}
$$

From (2)

$$
\begin{gathered}
E_{f} \cos (\sigma)=230.94+72 \sin (36.87)=274.14 \\
\frac{E_{f} \sin (\sigma)}{E_{f} \cos (\sigma)}=\tan (\sigma)=\frac{57.6}{274.14}=0.210111 \\
\sigma=11.87^{\circ} \\
E_{f} \sin (11.87)=57.6 \\
E_{f}=\frac{57.6}{\sin (11.87)}=280.126 \mathrm{~V}
\end{gathered}
$$

Now, the power factor is increased to 1.0
$\mathrm{I}_{\mathrm{a}} \mathrm{X}_{\mathrm{S}}=\mathrm{E}_{\mathrm{f}} \sin (\sigma)=57.6 \mathrm{~V}$
$\mathrm{I}_{\mathrm{a}}=57.6 / 10=5.76 \mathrm{~A}$

$$
E_{f}=\sqrt{230.94^{2}+57.6^{2}}=238.015 \mathrm{~V}
$$

$$
\sigma=\tan ^{-1} \frac{57.6}{230.94}=14^{\circ}
$$

Example (14):

A 3-phase, Y-connected turbo-alternator, having a synchronous reactance of 10Ω per phase and negligible armature resistance, has an armature current of 220 A anity p.f. The supply voltage is constant at 11 kV at constant frequency. If the steam admission is unchanged and the e.m.f. raised by 25%, determine the current and power factor.

If the higher value of excitation is maintained and the steam supply is slowly increased, at what power output will the alternator pulls out of synchronism?

Since unity power factor, the drop $\mathrm{I}_{\mathrm{a} 1} \mathrm{X}_{\mathrm{s}}$ is $\perp \mathrm{V}$ giving the triangle OAH

$$
\begin{gathered}
E_{f}=\sqrt{\left(\frac{11000}{\sqrt{3}}\right)^{2}+(220 \times 10)^{2}}=6721.11 \mathrm{~V} \\
\delta_{1}=\tan ^{-1} \frac{2200}{6350.853}=19.11^{\circ} \\
E_{f} \sin (\delta 1)=6721.11 \times \sin (19.11)=2200
\end{gathered}
$$

Since steam admission is unchanged, this mean the power is held constant and this is represented by the constant power line DG

The induced emf increased by $25 \%=\mathrm{E}_{\mathrm{f} 2}=1.25 \times 6721.11=8401.388 \mathrm{~V}$
$\mathrm{E}_{\mathrm{f} 2} \sin (\delta 2)=2200$

$$
\delta_{2}=\sin ^{-1}\left(\frac{2200}{8401.388}\right)=15.181^{\circ}
$$

$\mathrm{OC}=\mathrm{E}_{\mathrm{f} 2} \cos \left(\delta_{2}\right)=8401.388 \times \cos (15.181)=8108.225$
$\mathrm{AC}=8108.225-(11000 / \sqrt{ } 3)=1757.3725$

$$
\varphi=\tan ^{-1} \frac{1757.3725}{2200}=38.618^{\circ}
$$

P.F. $=\cos (38.618)=0.7813$ Lagging
$\mathrm{I}_{\mathrm{a} 2} \mathrm{X}_{\mathrm{S}} \sin (\varphi)=1757.3725$
$\mathrm{I}_{\mathrm{a} 2}=281.574 \mathrm{~A}$
Since the steam is increased until pulls out of synchronism, this mean max. power

$$
P_{\max }=\frac{3 V_{a} E_{f}}{X_{S}} \sin (90)=\frac{3 \times \frac{11000}{\sqrt{3}} \times 8401.388}{10}=16.006794 \mathrm{MW}
$$

Example (15)

A 3-phase, $11.0 \mathrm{kV}, 4.2 \mathrm{MW}, \mathrm{Y}$-connected turbo-alternator, having a synchronous reactance of 10Ω per phase and an armature resistance of 1.0Ω per phase, is working at full load at unity p.f. If the steam admission is unchanged and the e.m.f. raised by 35%, determine:
a) the armature current and power factor.
b) The output power

If the higher value of excitation is maintained and the steam supply is slowly increased,
c) At what power output will the alternator pulls out of synchronism?
d) Calculate the armature current and power factor under this condition.

At full load at unity p.f.

$$
\begin{gathered}
I_{a}=\frac{4.2 \times 10^{6}}{\sqrt{3} \times 11000 \times 1}=220.44283 \mathrm{~A} \\
E_{f}=\sqrt{\left(\frac{11000}{\sqrt{3}}+220.44283\right)^{2}+(220.44283 \times 10)^{2}}=6931.19272 \mathrm{~V} \\
\tan (\delta)=\frac{220.44283 \times 10}{\frac{11000}{\sqrt{3}}+220.44283}=0.3355 \\
\delta=18.54471^{\circ}
\end{gathered}
$$

Now, E_{f} increased by 35% and the power remains constant:

$$
E_{f}=1.35 \times 6931.19272=9357.1102 V
$$

Since the power is constant:

$$
\begin{gathered}
E_{f 1} \sin \left(\delta_{1}\right)=E_{f 2} \sin \left(\delta_{2}\right) \\
6931.19272 \sin (18.54471)=6931.19272 \sin \left(\delta_{2}\right) \\
\delta_{2}=13.627^{\circ}
\end{gathered}
$$

At this condition:

$$
\begin{gather*}
E_{f} \cos (\delta)=V+I_{a} R_{a} \cos (\varphi)+I_{a} X_{s} \sin (\varphi) \tag{1}\\
E_{f} \sin (\delta)=I_{a} X_{s} \cos (\varphi)-I_{a} R_{a} \sin (\varphi) \tag{2}
\end{gather*}
$$

From (2)

$$
\begin{equation*}
I_{a} \cos (\varphi)=\frac{E_{f} \sin (\delta)+I_{a} R_{a} \sin (\varphi)}{X_{s}} \tag{3}
\end{equation*}
$$

Substituting in (1)

$$
\begin{gathered}
E_{f} \cos (\delta)=V+R_{a} \frac{E_{f} \sin (\delta)+I_{a} R_{a} \sin (\varphi)}{X_{s}}+I_{a} X_{s} \sin (\varphi) \\
E_{f} \cos (\delta)=V+\frac{R_{a} E_{f} \sin (\delta)}{X_{s}}+I_{a} \sin (\varphi)\left[X_{s}+\frac{R_{a}^{2}}{X_{s}}\right]
\end{gathered}
$$

From the above equation

$$
\begin{equation*}
I_{a} \sin (\varphi)=249.74275 \tag{4}
\end{equation*}
$$

Substituting with this value in (3)

$$
\begin{equation*}
I_{a} \cos (\varphi)=245.4279 \tag{5}
\end{equation*}
$$

Dividing (5) over (4) and taking inverse tan:

$$
\varphi=45.5 \rightarrow p . f=0.701 \mathrm{lag}
$$

From (4)

$$
I_{a}=350.152 \mathrm{~A}
$$

The output power is:

$$
P_{o u t}=\frac{3 V_{a} E_{f}}{Z_{S}} \cos (\theta-\delta)-\frac{3 E_{f}^{2}}{Z_{S}} \cos (\theta)
$$

Where θ the impedance angle $=\tan ^{-1}\left(\mathrm{X}_{\mathrm{S}} / \mathrm{R}_{\mathrm{a}}\right)$

$$
\begin{gathered}
Z_{S}=10.04988, \quad \theta=84.2894^{\circ} \\
P_{\text {out }}=\frac{3 \times \frac{11000}{\sqrt{3}} \times 9357.1102}{10.04988} \cos (84.2894-13.627) \\
-\frac{3 \times 9357.1102^{2}}{10.04988} \cos (84.28) \\
P_{\text {out }}=5874048.7-2600660.733=3273387.967 \mathrm{~W}
\end{gathered}
$$

For maximum power, $\mathrm{dP}_{\text {out }} / \mathrm{d} \delta=0$

$$
\frac{d P_{o u t}}{d \delta}=-\frac{3 V_{a} E_{f}}{Z_{S}} \sin (\theta-\delta)=0
$$

This occurred at $\delta=\theta$,

$$
\delta=84.2894^{\circ}
$$

Then the maximum power can be expressed as:

$$
\begin{gathered}
\left(P_{\text {out }}\right)_{\max }=\frac{3 V_{a} E_{f}}{Z_{S}}-\frac{3 E_{f}{ }^{2} R_{a}}{Z_{S}{ }^{2}} \\
\left(P_{\text {out }}\right)_{\max }=\frac{3 \times \frac{11000}{\sqrt{3}} \times 9357.1102}{10.04988}-\frac{3 \times 9357.1102^{2}}{10.04988^{2}} \\
\left(P_{\text {out }}\right)_{\max }=17739206.15-2600656.485=15138549.66 \mathrm{~W}
\end{gathered}
$$

At this condition:

$$
\begin{gather*}
E_{f} \cos (\delta)=V+I_{a} R_{a} \cos (\varphi)-I_{a} X_{s} \sin (\varphi) \tag{1}\\
E_{f} \sin (\delta)=I_{a} X_{s} \cos (\varphi)+I_{a} R_{a} \sin (\varphi) \tag{2}
\end{gather*}
$$

From (2)

$$
\begin{equation*}
I_{a} \cos (\varphi)=\frac{E_{f} \sin (\delta)-I_{a} R_{a} \sin (\varphi)}{X_{s}} \tag{3}
\end{equation*}
$$

Faculty of Engineering at Shubra
Substituting in (1)

$$
\begin{gathered}
E_{f} \cos (\delta)=V+R_{a} \frac{E_{f} \sin (\delta)-I_{a} R_{a} \sin (\varphi)}{X_{s}}-I_{a} X_{s} \sin (\varphi) \\
E_{f} \cos (\delta)=V+\frac{R_{a} E_{f} \sin (\delta)}{X_{s}}-I_{a} \sin (\varphi)\left[X_{s}+\frac{R_{a}^{2}}{X_{s}}\right]
\end{gathered}
$$

From the above equation

$$
\begin{equation*}
I_{a} \sin (\varphi)=628.7972 \tag{4}
\end{equation*}
$$

Substituting with this value in (3)

$$
\begin{equation*}
I_{a} \cos (\varphi)=868.1875 \tag{5}
\end{equation*}
$$

Dividing (5) over (4) and taking inverse tan:

$$
\varphi=54.085 \rightarrow p . f .=0.5866 \quad(\text { lead })
$$

From (4)

$$
I_{a}=776.3949 A
$$

Example (16):

A $600-\mathrm{kVA}, 3300-\mathrm{V}, 8$-pole, 3-phase, $50-\mathrm{Hz}$ alternator has following characteristic:
Amp-turns/pole : 400050007000 10,000

Terminal E.M.F. : 2850 340038504400
There are 200 conductors in series per phase.
Find the short-circuit characteristic, the field ampere-turns for full-load 0.8 p.f. (lagging) and the voltage regulation. Given that the inductive drop at full-load is 7% and that the equivalent armature reaction in amp-turns per pole at Z.P.F $=1.06 \times$ ampere-conductors per phase per pole. O.C. terminal voltages are first converted into phase voltages and plotted against field amp turns, as shown in Fig.

Full-load current

$$
=\frac{600,000}{\sqrt{3} \times 3300}=105 \mathrm{~A}
$$

Demagnetising amp-turns per pole per phase for full-load at zero p.f. = $1.06 \times 105 \times 200 / 8$
$\mathrm{F}_{\mathrm{a}}=2780$ A.t/pole
Phase voltage $=3300 / \sqrt{ } 3=1910 \mathrm{~V}$
Leakage reactance drop $=0.07 \times 1910=133 \mathrm{~V}$
From phasor diagram, $O A$ represents phase voltage, $A B$ which represent $I_{a} X_{L}$ is drawn \perp current $O I, O B$ is the resultant voltage $E_{r}=1987 \mathrm{~V}$

From O.C.C., we find that 1987 V correspond to 5100 field amp-turns that represent F_{r}. Hence, $O C=5100$ is drawn \perp to OB .
$C D$ represent $F_{a}=2780$ is $/ /$ to the current $O I$. Hence, $O D$ that represent $F_{f}=7240$ (approx). From O.C.C. it is found that this corresponds to an O.C. voltage of 2242 volt. Hence, when load is thrown off, the voltage will rise to 2242 V.

$$
\begin{aligned}
\% \text { regn. } & =\frac{2242-1910}{1910} \times 100 \\
& =17.6 \%
\end{aligned}
$$

We have found that field amp-turns for balancing armature reaction only are 2,780 . To this should be added field amp-turns required for balancing the leakage reactance voltage drop of 133 V . Field amp-turns corresponding to 133 volt on O.C. are 300 approximately.
\therefore Short-circuit field amp-turns $=2780+300=3080$
Hence, we get a point B on S.C.C. i.e. $(3080,105)$ and the other point is the origin. So S.C.C. (which is a straight line).

Sheet (2) Cylindrical Synchronous Machines

1 - In a $50-\mathrm{kVA}, \mathrm{Y}$-connected, $440-\mathrm{V}, 3-\mathrm{phase}, 50-\mathrm{Hz}$ alternator, the effective armature resistance is 0.25Ω per phase. The synchronous reactance is 3.2Ω per phase and leakage reactance is 0.5Ω per phase. Determine at rated load and unity power factor :
(a) Line value of the internal resultant e.m.f. E_{r}
(b) Line value of the no-load e.m.f. E_{f}
(c) Percentage regulation on full-load
(d) Armature reactance.
[471 V, 592V, $34.65 \%, 2.7 \Omega$]
2- A $1000 \mathrm{kVA}, 3300-\mathrm{V}, 3$-phase, Y-connected alternator delivers full-load current at rated voltage at 0.80 p.f. Lagging. The resistance and synchronous reactance of the machine per phase are 0.5Ω and 5Ω respectively. Estimate the terminal voltage for the same excitation and same load current at 0.80 p.f. leading.

3- Find the synchronous impedance and reactance of an alternator in which a given field current produces an armature current of 200 A on short-circuit and a generated e.m.f. of 50 V on open-circuit. The armature resistance is 0.1Ω. To what induced voltage must the alternator be excited if it is to deliver a load of 100 A at a p.f. of 0.8 lagging, with a terminal voltage of 200 V .

4- From the following test results, determine the voltage regulation of a 2000V(phase), Y-connected 3-phase alternator delivering a current of 100 A at
(i) unity p.f.
(ii) 0.8 leading p.f.
and (iii) 0.71 lagging p.f.

Test results : Full-load current of 100 A is produced on short-circuit by a field excitation of 2.5 A . An e.m.f. of 500 V is produced on open-circuit by the same excitation. The armature resistance is 0.8Ω.

$$
[7 \%,-9 \%, 21.6 \%]
$$

5- A $100-\mathrm{kVA}, 3000-\mathrm{V}, 50-\mathrm{Hz} 3-\mathrm{phase}$ star-connected alternator has effective armature resistance of 0.2Ω. The field current of 40 A produces short-circuit current of 200 A and an open-circuit emf of 1040 V (line value). Calculate the full-load voltage regulation at 0.8 p.f. lagging and 0.8 p.f. leading. Draw phasor diagrams.

$$
[2.2 \%,-1.8 \%]
$$

6- A 3-phase, star-connected alternator is rated at $1600 \mathrm{kVA}, 13,500 \mathrm{~V}$. The armature resistance and synchronous reactance are 1.5Ω and 30Ω respectively per phase. Calculate the percentage regulation for a load of 1280 kW at 0.8 leading power factor.

7- A $3-\mathrm{phase}, 10-\mathrm{kVA}, 400-\mathrm{V}, 50-\mathrm{Hz}, \mathrm{Y}$-connected alternator supplies the rated load at 0.8 p.f. lag. If the resistance is 0.5Ω and syn. reactance is 10Ω, find the power angle and voltage regulation.
[18.39 $\left.{ }^{\circ}, 48 \%\right]$
8- The following test results are obtained from a 3 -phase, $6,000-\mathrm{kVA}, 6,600 \mathrm{~V}$, Yconnected, 2-pole, $50-\mathrm{Hz}$ turbo-alternator:
With a field current of 125 A , the OC voltage is $8,000 \mathrm{~V}$ at the rated speed; with the same field current and rated speed, the SC current is 800 A . At the rated full-load, the resistance drop is 3\%. Find the regulation of the alternator on full-load and at a power factor of 0.8 lagging.

9- A 3-phase, Y-connected, 3300 V , synchronous generator which supplies 1000 kW at 80 percent power factor lag, if its OCC is given by the following data:

Field Current (A)	80	96	118
OCC line voltage	3300	3600	3900

the stator winding has a per phase resistance of 0.15 ohm and a leakage reactance of 1.2 ohm. There are 16 poles, each wound with 108 turns. The armature winding is arranged in 144 slots, 5 conductors per slot, with full-pitched coils.
a) Calculate the armature MMF in AT/Pole
b) Estimate the field current (I_{f}) for this loading condition

Answer ($\mathrm{F}_{\mathrm{a}}=4250$ AT/Pole \& $\mathrm{I}_{\mathrm{f}}=126$ A)

10- Calculate the saturated synchronous reactance (in $\Omega /$ phase and per unit) of a 85kVA synchronous machine which achieves its rated open-circuit voltage of 460 V at a field current 8.7 A and which achieves rated short-circuit current at a field current of 11.2 A.

Answer (Xs = $3.21 \Omega /$ phase $=1.29$ per unit)
11- A synchronous generator with 40% synchronous reactance and negligible resistance is supplying $3 / 4$ of the full load current at 0.7 p.f. lag and at normal terminal voltage. If the current rises to the full load value at 0.6 p.f. lag, determine the percentage change in the terminal voltage if the excitation is kept constant.

12- A 3-phase, delta-connected, $220 \mathrm{~V}, 50 \mathrm{~Hz}, 1500 \mathrm{rpm}$ synchronous motor has a synchronous reactance of 4Ω /phase. It receives an input line current of 30 A at a leading p.f. of 0.8 . Find the line value of induced $\mathrm{emf}\left(\mathrm{E}_{\mathrm{f}}\right)$ and the load angle expressed in mechanical degrees.

Now, if the mechanical load is disconnected without change of excitation, determine the magnitude of the line current under the new condition. Neglect any losses.

Answer $\left(\mathrm{E}_{\mathrm{f}}=268 \mathrm{~V}, \delta=24, \mathrm{I}_{\mathrm{L}}=20.8 \mathrm{~A}\right)$
13- A 3-phase, Y-connected, 4-pole, $400 \mathrm{~V}, 200 \mathrm{hp}$, synchronous motor has a synchronous reactance of $0.5 \Omega /$ phase, the resistance may be neglected. Calculate the load angle and the input current and p.f. when the machine is working at full load with its emf is adjusted to 1.0 pu based on terminal voltage.

$$
\text { Answer }\left(\delta=28, \mathrm{I}_{\mathrm{a}}=278.35 \mathrm{~A}, \text { p.f. }=0.776 \mathrm{lag}\right)
$$

14- A $1000 \mathrm{KVA}, 6.6 \mathrm{kV}, 50 \mathrm{~Hz}, 3$-phase, 6-pole, Y-connected, synchronous motor has a synchronous impedance of $50 \Omega /$ phase. The excitation is adjusted so that 50% overload is possible before it pulls out of synchronism. Calculate the necessary E_{f} to permit this overload margin and the output power and the input power factor.

If the output power is held constant and the motor runs at full load, calculate the input power factor and the load angle.

15- A 6 pole round rotor, 3-ph Y-connected synchronous machine has the following tests:

Open circuit test: 4000 V line to line at $1000 \mathrm{rev} / \mathrm{min} 50 \mathrm{~A}$ rotor current
Short circuit test: 300 A at $500 \mathrm{rev} / \mathrm{min} 50 \mathrm{~A}$ rotor current
Neglect the stator resistance and core losses, and assuming a linear open circuit characteristic, calculate:
(a) The machine synchronous reactance at 50 Hz ,
(b) The rotor current required for the machine to operate as a motor at 0.8 power factor leading from a supply of 3.3 kV line to line with an output power of 1000 kW ,
(c) The rotor current required for the machine to operate as a generator on an infinite bus of 3.3 kV line to line when delivering 1500 kVA at 0.8 power factor lagging, (d) The load angle for (b) and (c), and Sketch the phasor diagram for (b) and (c).

Answer: $7.7 \mathrm{~W}, 69.54 \mathrm{~A}, 76 \mathrm{~A}, 24.8^{\circ}, 27.4^{\circ}$
16- A 3-phase, 8-pole, $50 \mathrm{~Hz}, 6600 \mathrm{~V}$, Y-connected synchronous motor has a synchronous impedance of $0.66+\mathrm{j} 6.5 \Omega$ /phase. When excited to give emf of 4500 $\mathrm{v} /$ phase, it takes an input power of 2500 kW . Calculate the electromagnetic torque, input current, p.f., and the load angle.

Answer (32100 Nm, 225.7 A, 0.919 lead, 18°)
17- For a $3 \mathrm{ph}, \mathrm{Y}$ - connected $2500 \mathrm{kVA}, 6600 \mathrm{~V}$, synchronous generator operating at full load, calculate
(a) The percent voltage regulation at a power factor of 0.8 lagging,
(b) The percent voltage regulation at a power factor of 0.8 leading.

The synchronous reactance and the armature resistance are 10.4Ω and 0.071Ω respectively. Answer (44\%, -20\%)

18- A Y-connected, $3-\mathrm{ph}, 50 \mathrm{~Hz}, 8$ pole, synchronous alternator has an induced voltage of 4400 V between the lines when the rotor field current is 10 A . If this alternator is to generate 60 Hz voltage, compute the new synchronous speed and induced voltage for the same rotor current of 10 A .

Answer: $\mathrm{E}_{\text {new }}=5280 \mathrm{~V}, \mathrm{n}_{\text {syn-new }}=900 \mathrm{rev} / \mathrm{min}$

19- A 3-ph, Y-connected, 6-pole, alternator is rated at $10 \mathrm{kVA}, 220 \mathrm{~V}$, at 60 Hz . Synchronous reactance $X_{s}=3 \Omega$. The no load line to neutral terminal voltage at 1000 $\mathrm{rev} / \mathrm{min}$ follows the magnetization curve is as follows:

$\mathrm{E}(\mathrm{V}) 11$	38	70	102	131	156	178	193	206	215	221	224
$\mathrm{I}_{\mathrm{f}}(\mathrm{A}) 0$	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2

Determine
(a) The rated speed in rev/min,
(b) The field current required for full load operation at 0.8 power factor lagging.

Answer: nsyn=1200 rev/min, If=1.0 A
20- The following values give the open-circuit and full-load zero p.f saturation curves for a $15000-\mathrm{kVA} .11000 \mathrm{~V}, 3-\mathrm{ph}, 50-\mathrm{Hz}$, star-connected turbo-alternator:

Field AT $\times 1000: 10 \quad 18 \quad 24 \quad 30 \quad 40$
$\begin{array}{llllllll}\text { O.C. line in }(\mathrm{kV}): 4.9 & 8.4 & 10.1 & 11.5 & 12.8 & 13.3 & 13.65 \\ \text { Zero p.f.in }(\mathrm{kV}): & - & 0 & - & - & - & 10.2 & -\end{array}$
Find the armature reaction, the armature reactance and the synchronous reactance. Deduce the regulation for full-load at 0.8 power lagging.

21- A $600-\mathrm{kVA}, 3300-\mathrm{V}, \quad 8-\mathrm{pole}$, 3-phase, $50-\mathrm{Hz}$ alternator has following characteristic :

Amp-turns/pole	$: 4000$	5000	7000	10,000
Terminal E.M.F. $: 2850$	3400	3850	4400	

There are 200 conductors in series per phase.
Find the short-circuit characteristic, the field ampere-turns for full-load 0.8 p.f. (lagging) and the voltage regulation.

Given that the inductive drop at full-load is 7% and that the equivalent armature reaction in amp-turns per pole at Z.P.F $=1.06 \times$ ampere-conductors per phase per pole.
22- The following data are taken from the open circuit and short circuit characteristics of a $45 \mathrm{kVA}, 3-\mathrm{ph}$, Y-connected, 220 V (line to line), 6-pole, 60 Hz synchronous machine:

OCC: Line to line voltage $=220 \mathrm{~V}$ Field current $=2.84 \mathrm{~A}$
SCC: Armature current (A) 118152 Field current (A) 2.202 .84
Air gap line: Field current $=2.20$ A Line to line voltage $=202 \mathrm{~V}$
Calculate the unsaturated value of the synchronous reactance, and its saturated value at the rated voltage. Express the synchronous reactance in ohms per phase and also in per unit on the machine rating as a base.

Answer: 0.987 W per phase, 0.92 per unit, 0.836 W per phase, 0.775 per unit

23- The open-and short-circuit test readings for a 3-phase, star-connected, $1000-\mathrm{kVA}$, $2000 \mathrm{~V}, 50-\mathrm{Hz}$, synchronous generator are :

Field Current (A)	10	20	25	30	40	50
O.C. Line Voltage (V)	800	1500	1760	2000	2350	2600
S.C. Current (A)	--	200	250	300	--	--

The armature effective resistance and leakage reactance are 0.2Ω and 0.6Ω per phase, respectively. Draw the characteristic curves and estimate the full-load percentage regulation at 0.8 p.f. lag.

